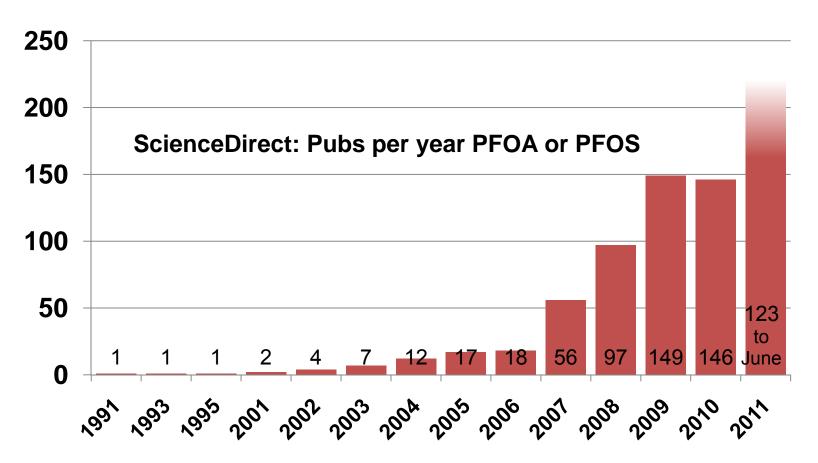
Epidemiology of PFOA and PFOS- new findings

Tony Fletcher, PhD

Department of Social and Environmental Health Research


London School of Hygiene & Tropical Medicine

Outline

- Background to the West Virginia/Ohio PFOA study
- Exposure patterns
- First results
- Other literature on key outcomes
- Further results planned from our studies

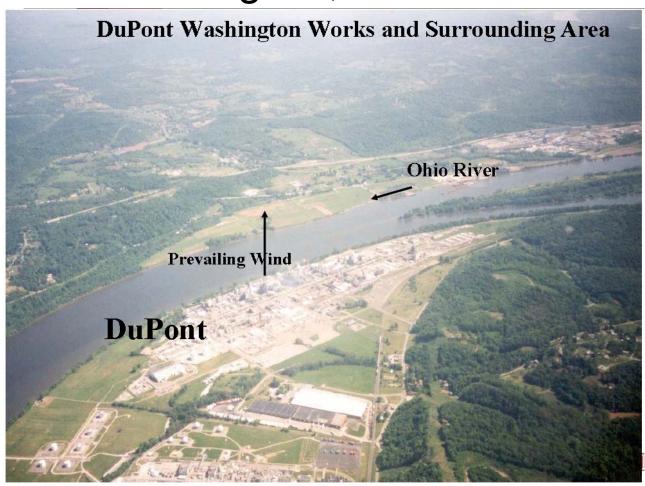
There has been a rapid rise in publications on exposure, toxicology and epidemiology of PFOA and PFOS

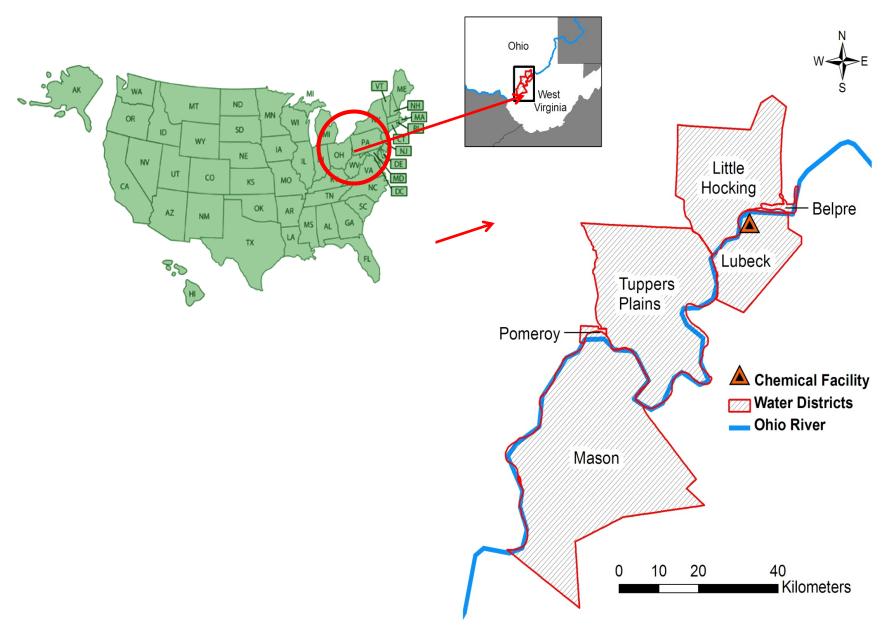
1199 pubs since 1983 on Pubmed by June 2011 643 pubs since 1991 on Science Direct

What are perfluoroalkyl acids?

- Synthetic fluorinated compounds used predominantly as surfactants (both water and oil resistant)
- Numerous consumer and industrial applications...cleanings, coatings, lubricants, firefighting foams, insecticides... PTFE manufacture
- C8 (PFOA and PFOS) compounds are most abundant

Perfluorooctane Sulfonate (PFOS)


Perfluorooctanoic Acid (PFOA)


PFAA toxicity?

- Persistent, resistant, and pervasive in environment
- Reported adverse effects in animal models
 - Carcinogenicity liver, pancreatic, and testicular
 - Developmental toxicity survival, delays, and deficits
 - Hepatotoxicity hypertrophy, altered lipid metabolism, peroxisome proliferation
 - Neurotoxicity altered behavior, cell replication, and proteins
 - Immunotoxicity suppression

NB: PPARα mechanism may account for interspecies differences

Background to the C8 Science Panel Study: PFOA emissions from a Teflon plant in West Virginia, USA

Tony Fletcher / Perfood June 17 2011

PFOA in public water and private wells near Dupont Washington Works

After PFOA was detected at higher levels in water supplies near the Dupont Plant due to air emissions and river discharges, this led to a:

Class Action legal case against Dupont

Settlement mandated:

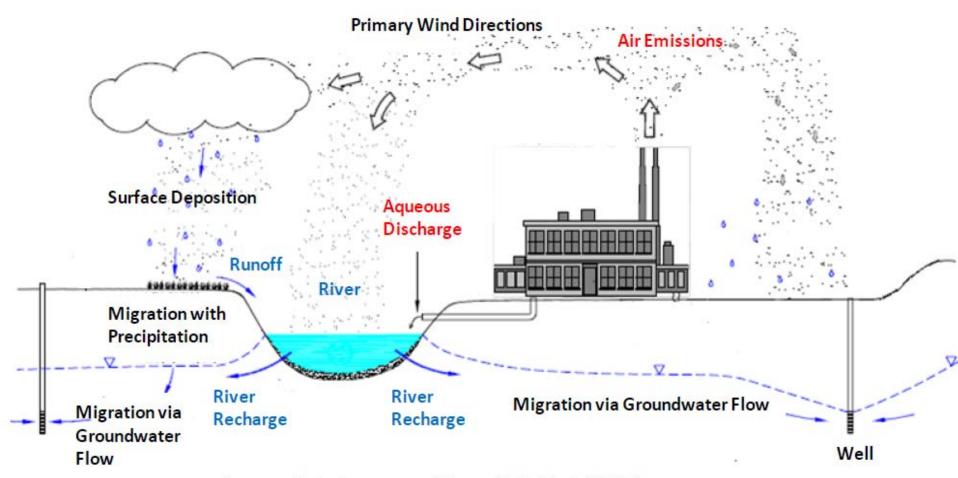
- Installation of GAC filtration of water
- 2. **C8 Health Project**, a survey of exposure and clinical markers
- C8 Science Panel to research and evaluate link of PFOA to disease

The C8 Science Panel

- Members: Tony Fletcher, LSHTM; David Savitz, Brown Univ; Kyle Steenland, Emory Atlanta
- We were selected by agreement between the two sides, the "Settling Parties" - Dupont and the Plaintiffs/Class Action; Independent of the two sides.
- Roles:
- 1. <u>design and conduct</u> a health study in the communities exposed to C8/PFOA.
- evaluate the evidence to determine if there is a "Probable Link" between C8/PFOA exposure and any human disease
 - If so a screening programme will be set up

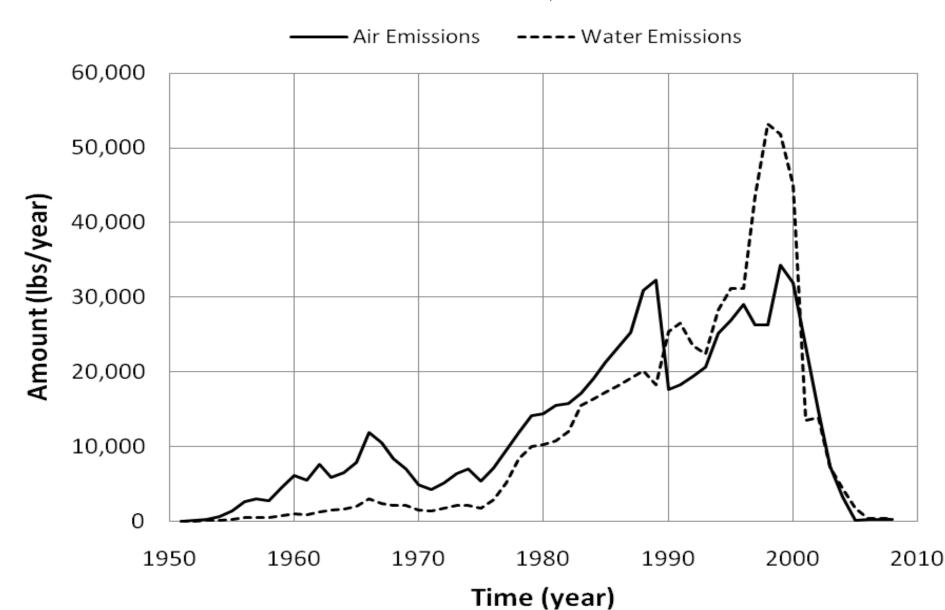
Data sources

- Data on history of plant emissions of PFOA into the air and river
- Biomonitoring data on PFAAs and clinical markers, and questionnaire responses in community – 69030 participants in the "C8 Health Project"
- Further follow up in the C8 Science Panel Study: with additional disease, interview and biomarker data in population samples


Science Panel Research Programme

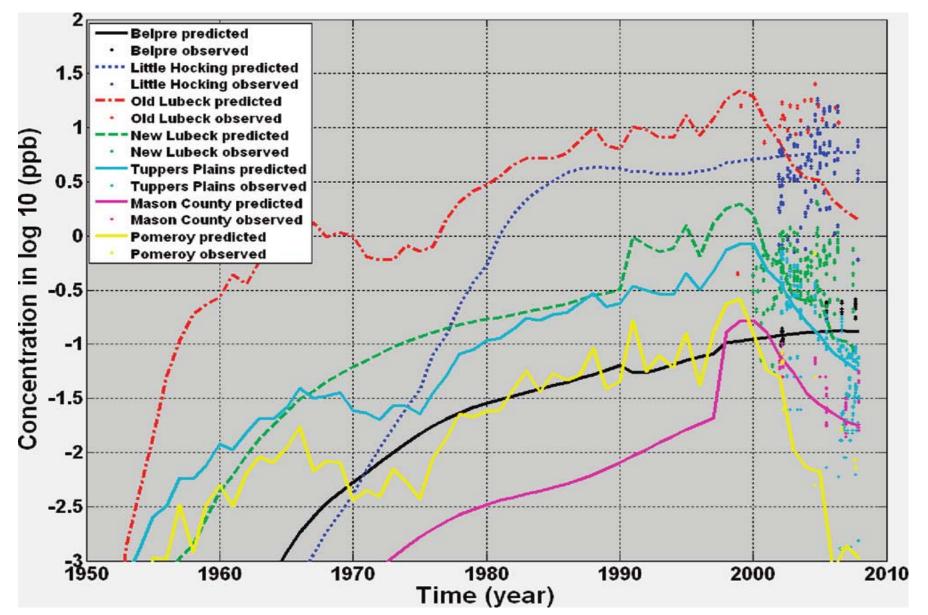
Overall objective: to assess relationship of PFOA and several diseases and clinical markers including:

- Cancer
- Cardiovascular Disease and lipids
- Reproductive outcome and endocrine disruption
- Thyroid, Liver and Immune dysfunction
- Neurological impairment
- Several designs: reconstruction of exposure history, cross sectional studies, follow up studies, ecologic studies – details on C8 Science panel website


Exposure in the community

Schematic Transport Pathways

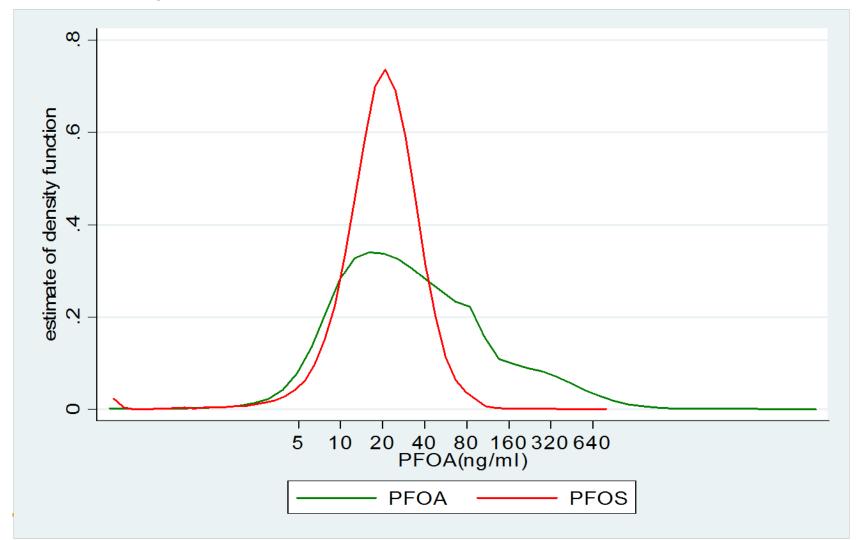
Source: Data Assessment Report, DuPont (2008)


Plant emissions to air and river, 1950-2005

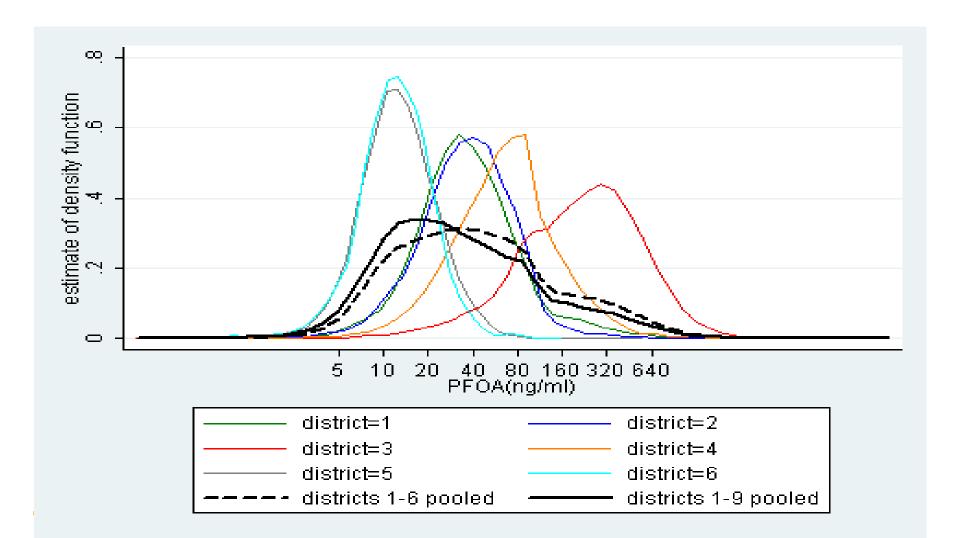
Tony Fletcher / Perfood June 17 2011

[Shin et al ES&T 2011]

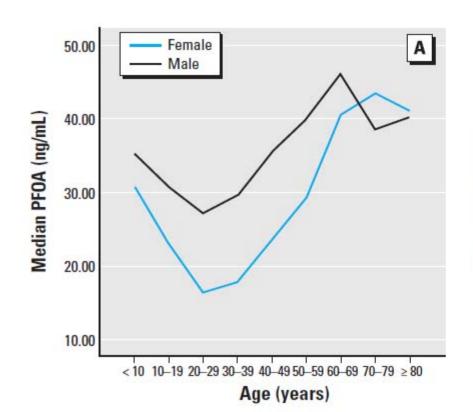
Predicted water district well PFOA concentrations & recent observations

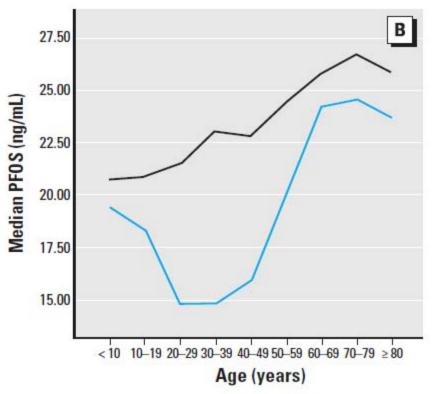


C8 health project data included biomarkers in blood and questionnaire data for 67000 people. 10 perfluorochemicals measured. Highest was PFOA (mean 82.9 ng/mL), normal range 4-5, then PFOS (mean 23.3)

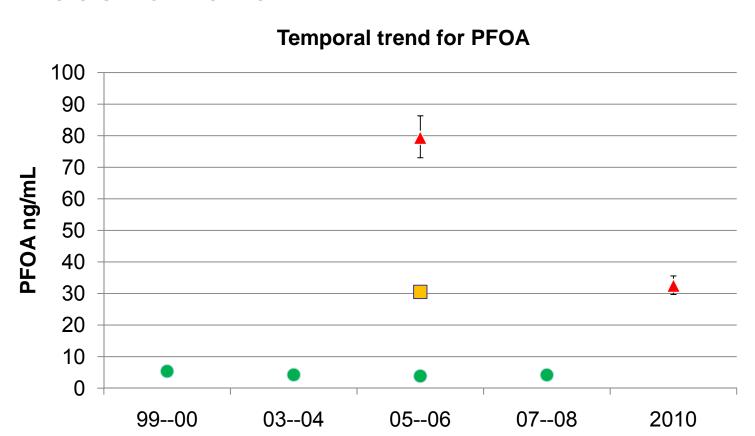

T-1		~	\sim		wed
Lai	מור		1 0	ntin	חסווו

Age/sex	Measure	PFHxA ^a	PFHxA ^b	PFHS	PFHpA ^a	PFHpA ^b	PFOA	PFOS	PFNA	PFDA ^a	PFDA ^b
Total populatio	n										
Female	Mean	8.0	1.4	4.3	0.6	1.2	68.8	20.7	1.5	0.5	0.8
	Median	0.5	1.0	2.7	0.3	0.8	23.6	17.6	1.3	0.3	0.7
	Geometric mean	0.5	1.1	2.8	0.4	1.0	27.9	17.0	1.3	0.4	0.7
	SD	1.0	1.1	6.2	0.8	1.2	190.6	14.1	8.0	0.4	0.4
Male	Mean	0.9	1.4	5.9	0.7	1.3	98.2	26.0	1.7	0.5	0.8
	Median	0.6	1.0	3.8	0.3	0.9	33.7	22.9	1.5	0.3	0.7
	Geometric mean	0.6	1.2	4.0	0.4	1.0	39.4	21.9	1.5	0.4	0.7
	SD	1.2	1.4	12.8	0.9	1.3	284.3	16.5	0.9	0.6	0.8
Total	Mean	0.9	1.4	5.1	0.6	1.2	82.9	23.3	1.6	0.5	0.8
	Median	0.5	1.0	3.2	0.3	0.9	28.2	20.2	1.4	0.3	0.7
	Geometric mean	0.6	1.1	3.3	0.4	1.0	32.9	19.2	1.4	0.4	0.7
	SD	1.1	1.3	10.0	0.9	1.2	240.8	15.6	0.9	0.5	0.7


Distribution of PFOA and PFOS in serum, n=67000. Much higher than normal background though less than many occupational serum level

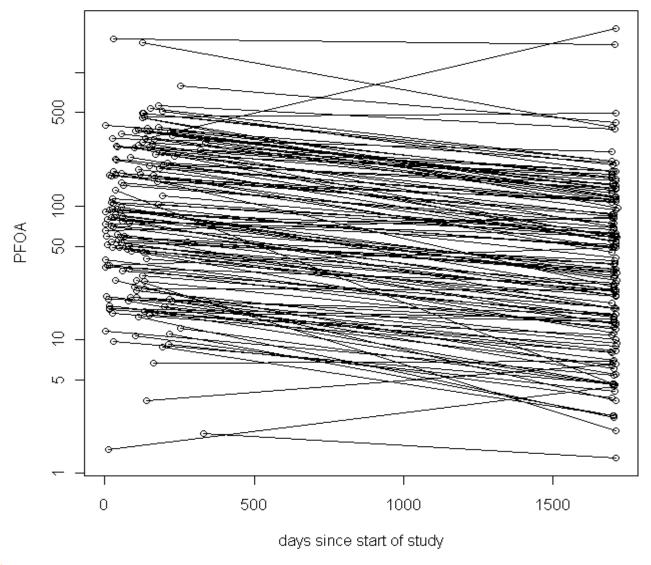


PFOA levels. Large differences in contamination between water districts.



Other significant predictors: age, sex (males +35%), has private well (+12%), use bottled water for drinking (-6%), grow own vegetables (+11%), vegetarian (-10%), consumed alcohol in last 3 days (+7%), current smoker (+6%)

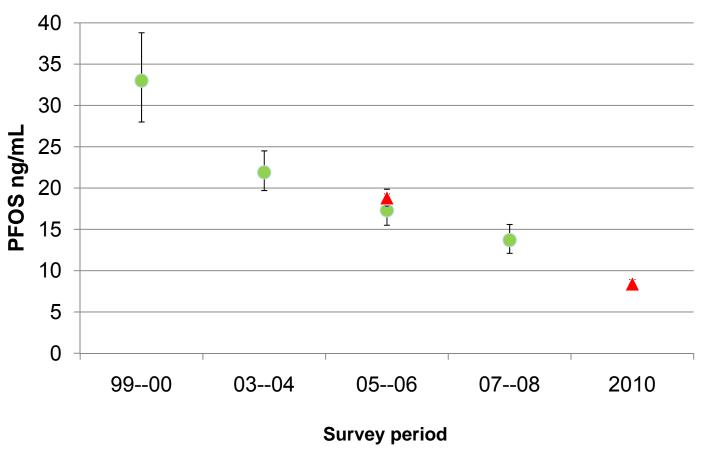
Serum PFOA is declining in population 2005 to 2010


Survey period

■C8 Science Panel(N=43876)

NHANES

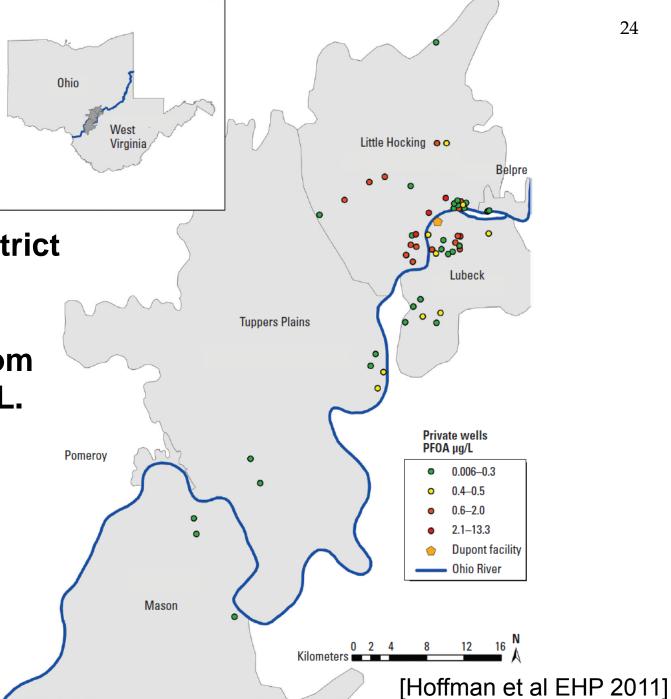
▲ Follow up(N=755)


PFOA Decline varies across population

Tony Fletcher / Pertood June 17 2011

Serum PFOS decline in population similar to US

Temporal trend for PFOS



Bioconcentration of PFOA from drinking water

Private wells
with PFOA
measurements
>LOD in the 6
contaminated
public Water District

areas.

PFOA ranged from 0.006 to 13.3 μg/L.

Tony Fletcher / Perfoc

Mean Serum PFOA in 108 users of private contaminated wells for drinking water

	Median serum PFOA					
Characteristic	n (%)	[µg/L (interquartile range)]	<i>p</i> -Value			
Total population	108 (100)	75.7 (31.5–130.5)				
Male	51 (47.2)	82.2 (45.9–164.3)	0.10			
Female	57 (52.8)	68.1 (21.0–115.5)				
Grow own vegetables						
No	64 (59.3)	50.7 (24.9–107.3)	< 0.001			
Yes	44 (40.7)	91.2 (57.0–145.2)				
Employed at DuPont						
No	94 (87.0)	67.6 (72.2–102.4)	0.11			
Yes	14 (13.0)	87.1 (27.4–145.1)				

Model predictors of serum PFOA in 108 users of private wells.

BCF: Mean biological concentration factor = $141.5 \mu g/L$ PFOA in serum per $\mu g/L$ in drinking water

serum PFOA.	ist regression model of
Covariate	β-Coefficient (95% CI)
Intercept	7.4 (-9.8 to 24.4)
Well PFOA	141.5 (134.9 to 148.1)
Males	18.8 (-1.6 to 39.1)
Age > 65 years	-4.2 (-24.2 to 15.9)
Grow own vegetables	18.4 (-1.3 to 38.1)
Employed at DuPont	5.9 (-24.1 to 36.2)
271 ' 1 ' 6 4	the first transfer of the

^aThe inclusion of other covariates (body weight, bottled water consumption, cigarette smoking, and alcohol consumption) did not alter the main associations.

C8 Science Panel study – results so far cross sectional findings and PFOA

Uric acid +ve association

Birth outcomes null

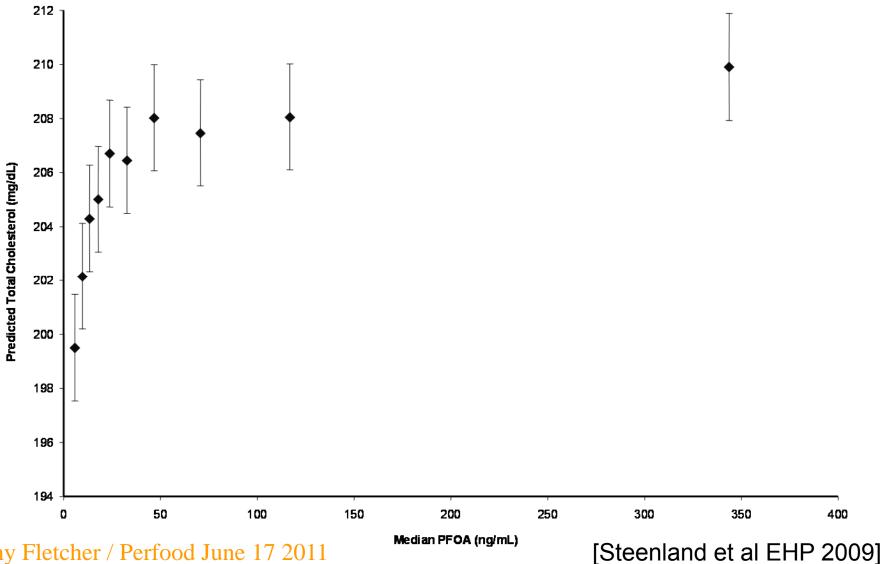
Diabetes null

Cholesterol +ve association

Age of puberty delay for girls

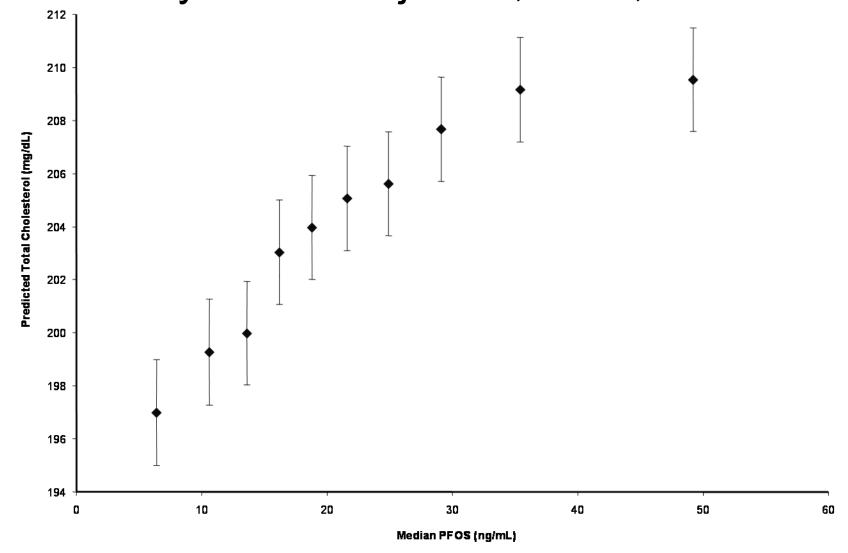
ADHD null

Immune markers -ve for IgA, CRP


Cholesterol and PFOA

- positively associated with higher PFOA in 10 human studies, six statistically significant
- PFOA not lipophilic, binds with albumin
- Most studies cross-sectional, prohibiting causal inference
- Positive human association opposite direction to animal data, where association is negative

Author, Study Description year	Number	Mean PFOA	_	Change in cholesterol (mg/dL)	Slope (assumes linearity)
Olsen et al. Cross-sectional; workers 2000	54	22,000	~ 22,000	~ 16	0.0007
Olsen et al. Longitudinal; workers 2003	265	1,500	NA	NA	0.001
Emmett et Cross-sectional;community; al. 2006b adults	860	354	4,000	22	0.006
Olsen and Cross-sectional; workers Zobel 2007	371	2,210	NA	NA	0.001
Sakr et al. Cross-sectional; workers 2007a	1,024	428	1,000	5	0.005
Sakr et al. Longitudinal; workers 2009b	454	1,130	1,000	1	0.001
Costa et al. Longitudinal; workers 2009	54	12,000	NA	NA	0.001
Frisbee et Cross-sectional;community; al. 2010 children	12,476	69	400	10	0.03
Nelson et al. Cross-sectional;community; 2010 adults	860	4	5	10	2
Steenland et Cross-sectional; community; al. 2009b adults	46,294	80	340	11	0.03


Tony Fletcher / Perfood June 17 2011

Total cholesterol by PFOA decile in mid-Ohio valley adults. Adjusted, n=46,294

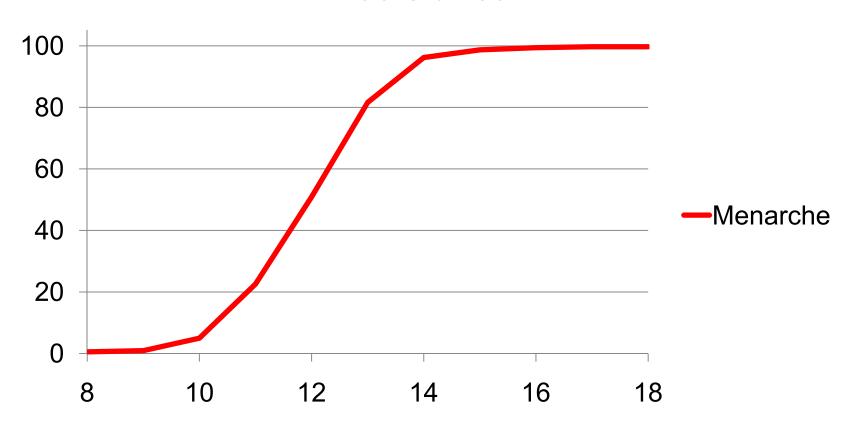
Tony Fletcher / Perfood June 17 2011

Total cholesterol by PFOS decile in mid-Ohio valley adults. Adjusted, n=46,294

Tony Fletcher / Perfood June 17 2011

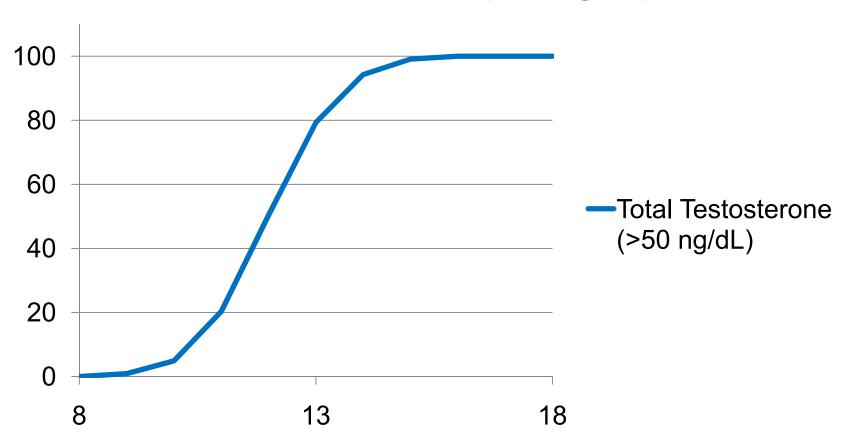
Age of puberty

Endocrine Effects

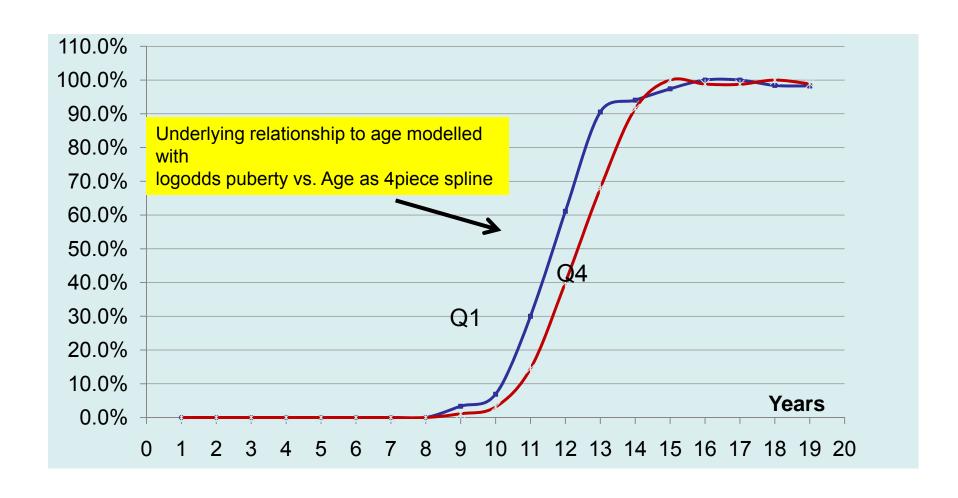

- Estrogen and testosterone levels affected by PFOS and PFOA – in different directions in different species
- Both premature and delayed maturation observed in animals exposed to PFOS & PFOA

Study Population

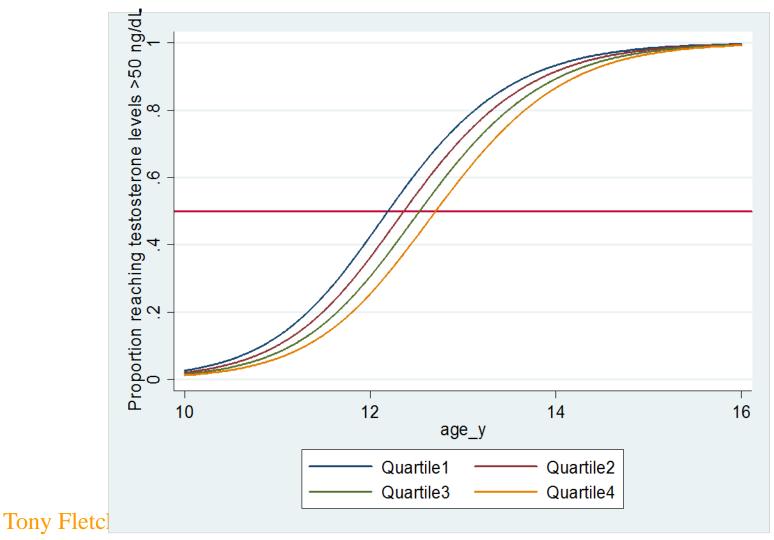
- Age range 8-18 years
- 3076 Boys
- 2931 Girls
- with data from community survey on:
 - exact age at interview
 - valid C8 values
 - measured hormones
 - questionnaire data


Indicators of Puberty: Prevalence of "puberty" by age in girls

Menarche: Question on whether periods had started



Indicators of Puberty: Prevalence of "puberty" by age in boys


Total Testosterone (>50 ng/dL)

Puberty by age by PFOS quartile

Fitted cumulative frequency of reaching puberty (total testosterone >50ng/dL) by quartile of PFOS. Shift in median age is measure of delay in puberty

Boys: puberty OR & delay: PFOA or PFOS

Total testosterone

	Total testosterone PFOS			Total testosterone PFOA (PFOS in model)			
	OR	95% CI	Days	OR	95% CI	Days	
Q2	0.74	0.46, 1.19	70	1.12	0.71, 1.75	-26	
Q3	0.58	0.37, 0.90	131	1.16	0.73, 1.84	-35	
Q4	0.46	0.29, 0.71	190	0.88	0.57, 1.37	31	
logPFOS/ logPFOA	0.58	0.44, 0.77	130	0.91	0.80, 1.04	23	

Girls: puberty OR & delay: PFOA or PFOS Menarche

		Menarche PFOS			Menarche PFOA			
	OR	95% CI	Days	OR	95% CI	Days		
Q2	0.72	0.47, 1.10	79	0.54	0.35, 0.84	142		
Q3	0.55	0.35, 0.86	141	0.50	0.32, 0.77	163		
Q4	0.55	0.35, 0.87	138	0.57	0.37, 0.89	130		
logPFOS/								
logPFOA	0.60	0.43, 0.83	120	0.83	0.73, 0.95	42		

Conclusions

- Delay in puberty average 4-6 months in relation to interquartile shift in PFOS
- Evident for boys and girls (girls only for PFOA)
- But exposure estimated was at/after age of puberty so can not be sure of direction of causality
- Further work planned on linking age of puberty to measures of pre-pubertal and in-utero PFC exposure in this population

ADHD in children in relation to PFAS, n=10,546, aged 5-18

ADHD Diagnosis

	No.	Crude	Adjusted	
Serum PFC, ng/mL	Cases	OR	OR	95% CI
				<u>.</u>
PFOA				
Q1: $0.6 - < 13.0$	327	1.00	1.00	
Q2: 13.0 – <28.2	364	1.14	1.10	0.94, 1.30
Q3: 28.2 – <65.3	337	1.04	0.98	0.83, 1.15
Q4: 65.3 – 2070.6	275	0.83	0.76	0.64, 0.90
PFOS				
Q1: 0.25 – <14.8	299	1.00	1.00	
Q2:14.8 – <20.2	321	1.06	0.99	0.83, 1.17
Q3: 20.2 – <27.9	318	1.06	0.96	0.81, 1.14
Q4: 27.8 – 202.1	365	1.22	1.09	0.93, 1.29
PFHxS				
Q1: 0.25 – <2.9	258	1.00	1.00	
Q2: 2.9 – <5.2	304	1.32	1.27	1.06, 1.52
				*
Q3: 5.2 – <10.1	364	1.49	1.43	1.21, 1.70
Q4: 10.1 – 276.4	377	1.59	1.53	1.29, 1.83

[Stein et al EHP 2011]

Search artic

A peer-reviewed open access journal published by the National Institute of Environmental Health Sciences,

Home Browse Articles About EHP General Information Authors

Media

Outreach

Partnerships

REVIEW

Epidemiologic Evidence on the Health Effects of Perfluorooctanoic Acid (PFOA)

Article

Kyle Steenland¹, Tony Fletcher², David A. Savitz³

1 Rollins School of Public Health, Emory University, Atlanta, Georgia, USA, 2 London School of Hygiene and Tropical Medicine, London, United Kingdom, 3 Mount Sinai School of Medicine, New York, New York, USA

Jump to

Abstract

CONCLUSIONS: Epidemiologic evidence remains limited, and to date data are insufficient to draw firm conclusions regarding the role of PFOA for any of the diseases of concern.

Birthweight

- Seven studies of birthweight in relation to PFOA serum levels
- Two showed significantly lower birthweight with higher PFOA, two showed similar but not significant results, while three were negative.
- Most were done at low general population PFOA levels and causality cannot be deduced due to cross sectional design.

Fertility

 Two reports from Denmark (general population) indicate decreased fertility with higher PFOA or PFOS, and decreased semen count with higher PFOA

 One report from mid-Ohio valley showed no association with miscarriage and a modest association with pre-eclampsia, but is limited by small numbers

Heart disease

- Data sparse in humans
- One worker mortality study showed positive trends with PFOA with 10-year lag (p=0.06)
- Second worker mortality study showed no association

Cancer

- PFOA causes pancreatic, testicular, liver, and perhaps breast tumors in rodents, but is not genotoxic/mutagenic
- •Human data sparse. Two worker cohort mortality studies show no consisted cancer excesses but numbers are small. A borderline-significant kidney cancer excess in one study.
- •Danish population based study shows no strong trends at low general population exposure levels; prostate and pancreatic cancer show some positive but not significant trends.

C8 Science Panel study – results over next 12 months, mainly longitudinal results including:

- Cancer
- Heart disease
- Liver, Kidney, Thyroid disease
- Infections
- Birth outcomes
- Neurobehavioural function in children
- Kidney, liver and thyroid function
- Longitudinal changes in clinical markers
- Endocrine and other effects in relation to in utero exposure
- Immune and inflammatory markers
- Gene-PFOA interactions

Funding is acknowledged from the C8 Class Action Settlement Agreement between DuPont and Plaintiffs (Circuit Court of Wood County, West Virginia, 2004). Funds are administered by an agency that reports to the Court. The C8 Science Panel, this research and its conclusions are independent of either party to the lawsuit.

I thank my colleagues for contributions to this work, in particular:

Ben Armstrong

Nicola Fitz-Simon

Valentina Gallo

Lorna Gibson

Giovanni Leonardi

Maria-Jose Lopez-

Espinosa

Priya Mondal

Amy Zaminal

Scott Bartell

Mike Luster

David Savitz

Kyle Steenland

Veronica Vieira

Thank you

see results on website:

www.c8sciencepanel.org

